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ABSTRACT Cryptocurrencies (e.g., Bitcoin and Ethereum), which promise to become the future of
money transactions, are mainly implemented with blockchain technology. However, blockchain suffers from
scalability issues. Sharding is the leading solution for blockchain scalability. Sharding splits the blockchain
network into sub-chains called shards/committees. Each shard processes a sub-set of transactions, rather
than the entire network processing all transactions. This raises security issues for sharding-based blockchain
protocols. In this paper, we propose a novel methodology to analyze the security of these protocols (e.g.,
OmniLedger and RapidChain). In particular, this methodology estimates the failure probability of one
sharding round taking into consideration the failure probabilities of all shards. To illustrate the effectiveness
of the estimated failure probability, we conduct a numerical analysis of our methodology based on a huge
number of trials. Finally, we compute confidence intervals to accurately estimate the failure probability and
compare our methodology with existing approaches.

INDEX TERMS blockchain, security analysis, sharding, failure probability, hypergeometric distribution

. INTRODUCTION

N recent years, blockchain, which is the underlying tech-
Inology behind digital cryptocurrencies, e.g., Bitcoin [1]
and Ethereum [2], has attracted considerable attention from
both academia and industry. Blockchain plays a significant
role in emerging fields such as Internet of Things (IoT),
the healthcare sector, edge computing, artificial intelligence
and the government sector. All these emerging fields benefit
from blockchain’s decentralization, immutability, robustness,
security, transparency and peer-to-peer network that records
digital transactions (e.g., cryptocurrency transfer). However,
Blockchain has a number of open issues such as scalability
[10]. Indeed, scalability is one of the key limitations and the
main challenge of blockchain [13]; while traditional central-
ized payment systems (e.g., Visa [5]) can handle 1000s of
transactions per second (tx/s), Bitcoin and Ethereum process
about 7 and 15 tx/s, respectively. Several solutions, to the
scalability issue, have been proposed in the literature, such
as sharding (e.g., Elastico [7], OmniLedger [8], RapidChain
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[9]), Directed Acyclic Graph (e.g., [16]), Plasma [14], and
Lightning Network [15]. The most promising solutions of the
scalability in the blockchain literature make use of sharding
[10]. Sharding splits/shards the blockchain into sub-chains
called shards/committees. Each shard processes a sub-set of
transactions rather than the entire network processing all
transactions. This increases the throughput (i.e., number of
transactions per second) of the network. However, shard-
ing may compromise the blockchain security. Indeed, for
the blockchain to be secure, all shards need to satisfy the
committee resiliency (i.e., maximum percentage of malicious
nodes that a shard can tolerate without being compromised);
throughout the paper we will use the terms committee and
shard interchangeably. In most networks, this resiliency is
33% (e.g., Elastico [7] and OmniLedger [8]); beyond that
resiliency, a consensus instance is fundamentally insecure.
The critical issue is that even if the whole network falls
well under the total resiliency (i.e., maximum percentage
of malicious nodes that the blockchain network can toler-
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ate without being compromised); this limit is 25% in most
blockchain networks, e.g., Elastico [7] and OmniLedger [8]),
a single shard could be compromised. Figure 1 shows a
scenarios in which a network, that contains 20 nodes with
25% malicious nodes (i.e., 5 malicious nodes), is split evenly
into 4 shards where 3 malicious nodes end up in shard 2.
This means that 60% of the nodes in shard 2 are malicious,
which is bigger than the committee resiliency (33%). This
is known as a single shard takeover attack. In sharding-
based blockchain protocols, the network is compromised if
only one shard is compromised (i.e., 1% attack). In this
paper, we analyze the security of sharding-based blockchain
protocols. In particular, we compute the failure probability
of the whole network by taking into consideration the failure
probability of each committee. The key contribution of this
paper is to propose a novel methodology that outperforms
the computation accuracy of existing approaches [3], [4],
[9]. The limitations of these approaches [3], [4], [9] come
from the fact that they assume that the failure probability of
the first committee is indicative of the failure probability of
any other committee; more specifically, they assume that the
failure probability of one epoch (i.e., fixed time period; e.g.,
once a day) is the failure probability of the first committee
times the number of committees [3], [4], [9]. However, when
the sampling, to partition the network into shards, is done
without replacement, the samples are not independent; this
means that when we sample the first committee, it is clear that
the parameterizations of the model change (i.e., the number
of nodes in the network, as well as the number of malicious
nodes). Thus, the failure probability of the second committee
will be different from the first, and the third will be different
from the first and the second, and so on. In addition, the
changes in the values of the parameters increase with the
sampling process (e.g., values when sampling the second
shard are very different from the values when sampling
the fifth shard compared to the values when sampling the
third shard). This means that the inaccuracy of the failure
probability estimate proposed in [3], [4], [9], grows with
the number of committees. Our methodology computes the
real failure probability of each committee, then computes
the failure probability of the entire network in one sharding
round (aka, one epoch), taking into consideration the failure
probabilities of all committees. The contributions of this
paper can be summarized as follows:

« We develop a probabilistic methodology to analyze the
security of sharding-based blockchain protocols. This
methodology corrects and outperforms, in terms of ac-
curacy, existing approaches;

« We estimate the failure probability and compute the
confidence intervals (CIs) in order to lower and upper
bound the estimated failure probability;

« We compare the proposed methodology with existing
approaches;

o We identify the parameters that impact the security of
sharding-based blockchain protocols (e.g., the size of

the committee, the number of sharding rounds in a
predefined period of time and the number of nodes in
the network).

The paper is organized as follows. Section II presents
definitions and notations used in the paper; in addition, it
presents the details of the proposed methodology. Section
IIT evaluates the proposed methodology. Finally, Section IV
concludes the paper.

II. METHODOLOGY
In this section, we propose a methodology to esti-
mate/compute the failure probability of one sharding round.

A. ABBREVIATIONS AND DEFINITIONS
Table 1 shows the list of symbols/variables that are used to
describe the proposed approach .

TABLE 1. Notations

Notation Description

N Total number of nodes

n Committee size

M Total number of malicious nodes

m; Number of malicious nodes in committee i

r Committee resiliency

R Total resiliency

A Number of committees

Pe Epoch failure probability

h(N, M,n,i) Hypergeometric distribution with parameters N, M and n

H(N, M,n,i) Cumulative hypergeometric distribution with parameters
N, M and n

CI Confidence interval

Yy Average number of years to fail

Es Expected number of sharding rounds until failure

Ny Number of trials

Nsy Number of sharding rounds per year

fo Failure probability for one sharding round

fp Estimated failure probability for one sharding round

Definition 1. Cumulative Hypergeometric Distribution.
The cumulative hypergeometric distribution H (N, M, n,m)
is the sum of the probability distribution function
h(N,M,n,i) for all & > m, which can be expressed as
follows:

H(N,M,n,m)= > h(N,M,n,i) (1)

i>m

(O
()

Definition 2. Committee Resiliency. The maximum per-
centage of malicious nodes that the committee is able to
contain whereas still being secure.

Definition 3. Total Resiliency. The maximum percentage
of malicious nodes that the whole network is able to contain
whereas still being secure.

Definition 4. Failure Probability. The probability that the
number of malicious nodes exceeds the malicious nodes
limit (i.e., maximum percentage of nodes that can act in a
malicious manner, e.g., in case of RapidChain [9], this limit

where

h(N,M,n,i) = 2)
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FIGURE 1. Sharding divides the network into subsets (shards), which means only a shard can handle a set of transactions, rather than the entire network. A

scenario where there is a single shard takeover attack (shard 2 in this case).

is 50% of nodes in a committee and 33% in the network) in
the network/committee.

B. HYPERGEOMETRIC DISTRIBUTION

In sharding-based blockchain protocols, the process of as-
signing nodes to shards can be modeled as sampling without
replacement because the committees do not overlap. When
the sample is done without replacement, we make use of
hypergeometric distribution instead of binomial distribution
[4]. Indeed, assigning nodes from the network to shards can
be modeled as sampling without replacement because the
committees can not overlap. When the sampling is done
without replacement, the hypergeometric distribution yields
better approximation compared to the binomial’s, especially
when the sample’s is bigger than 10% of the entire network
[4], [12]. Let X; denote the random variable correspond-
ing to the number of malicious nodes in committee ¢ and
P(X; = m;) denote the failure probability that committee
1 contains m; malicious nodes.

We assume that we have a network of /N nodes where M

nodes (M < N) are malicious. The probability that a node
M

is malicious is p = . We split N nodes into committees
where each committee has a size n = % where A is the

number of committees. When we sample the first committee,
the parameterizations of the model change (i.e., N and M); in
particular, N changes to N — n and M changes to M — mj,
where m; is the number of malicious nodes sampled in
committee 1. Then, when we sample the second committee,
N —n changes to N —2n and M —m; changes M —mj —mo,
where mo is the number of malicious nodes sampled in the
committee 2. The third committee will have ms3 malicious
nodes, and committee A will have m ) malicious nodes such
that mq+mo+. .. +my = M (see Figure 1). The distribution
of the first committee can be modeled by the hypergeometric
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distribution with the parameters N, M and n as follows:
XlNH(NaMan); 3

Similarly, the second committee can be modeled by the
hypergeometric distribution with the parameters N —n, M —
m1 and n as follows:

Xo ~H(N —n, M —my,n); “
And for the third committee we get:
X3 ~H(N —2n, M — (m1 + ma),n); Q)

Finally, the distribution of committee A (last committee) can
be expressed as follows:

A—1
Xy ~H(N = (A=1)n, M = > " m;,n). (6)
i=1

The probability density function of X = (X7, Xo, ...
(i.e., joint distribution) is given in (7).

The distribution in (7) is difficult and complex to compute.
Using Theorem 1 (see proof in Appendix), (7) can be rewrit-
ten as (8).

Theorem 1:

Let X = {Xi,Xs,...,X)\} be a random vector such
that X; ~ H(N — (i — 1)n, M — 2'_1my, n) for all i in
{1,2,..., A}

We have:
A—1 g A n
H h(N — jn, M — Zmi7n,mj+1) = lel (m>

§=0 i=0 (ﬁr)

7X)\)

(€))

A simple way to prove that the distribution in (7) is the
distribution in (8), is as follows: We have N nodes and we
need to pick M malicious nodes out of them. Thus, the total

number of possibilities is (1\1\2) For shard 1, the number of

3
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P(Xl = Mi,...,

A—1
= [ v
=0

=0

:m17X2:m25"'7

P(X,

X :m)\) :h(N7M7n,m1) xh(N—n,M—ml,n,m2)~-~

—jn, M — Zmi, n,Mjq1)

A—1
< (N = (A= D, M= 3 i, n,my)
@)
Xy = mA) = (ml) (mz])\/'. s (mA)
(as) N
(ar)

possibilities to arrange m, from n is (7:; ) for shard 2 is
( ) and for shard A is (nz ) Consequently, the number of
all posmblhtles taking into account all shards is the product
of (m) for i € {1,2,...,\}. To compute the required
probability, we need to divide this product by (7).

Now, to ensure that our methodology adapts well to the
situation, Lemma 1 (see proof in Appendix) proves that
the probability distribution in (8) is a proper Probability
Distribution Function (PDF).

Lemma 1:

The probability in (8) is a proper PDF; this means that:

ZP(XI =m1i,...7X>\ = m)\k) =1 (10)
=0 5=0 k=0

Note that m malicious nodes in shard 1 can assume any
of the following values: n, n — 1, ... and 0. Similarly, my
malicious nodes in shard 2 can assume any of the following
values: n, n — 1, ... and 0, and so on until the last shard.
Thus, the distributions in (7) and (8) represents only one
particular outcome. To consider all the possible outcomes, we
need to compute the joint hypergeometric distribution, which
is expressed in (11).

Finally, the failure probability (the probability that at least
one committee fails) can be expressed as follows:

fp=1-P(X1 <nr,Xs<nr,....Xy<nr) (12)

Even after the simplification we make (from (7) to (8)), the
probability in (12) is still complex and difficult to compute,
especially, when we consider a huge number of nodes. For
this reason, in the section III, we estimate this probability
instead of computing it.

C. EXISTING APPROACHES

In this section, we present existing approaches that are de-
voted to analyze the security of sharding-based blockchain
protocols [3], [4], [9]. More specifically, we present Hoeffd-
ing’s bound since it is the better bound (in terms of accuracy)
proposed in [3], [4] as well as RapidChain methodology [9].

4

1) Hoeffding’s Bound

We present Hoeffding’s bound [11] in order to compare
it with the proposed methodology. We choose Hoeffding’s
bound because it is the accurate bound, proposed in [3], [4].
This bound can be expressed as follows:

H(N,M,n,m) < F(y), (13)

ro=((5) (55 ) e

p=2andm = (p+y)n withy > 0.
Hence, we can bound the failure probability of one com-
mittee with resiliency r as follows:

H(N,M,n,nr) < F(y), (15)

where

y=r—p, (p<R).

Hafid et al. [3], [4] compute the epoch failure probability by
multiplying the failure probability for one committee by the
number of committees A = % In addition, it is possible
to ignore the bootstrap probability (i.e., the probability that
the committee election fails in the first epoch) since it is too
small (e.g., for RapidChain [9], this probability is smaller
than 2726-36)_ The epoch failure probability (p.) can thus be
bounded as follows:

Pe S AX F(y). (16)

2) RapidChain Methodology

In this section, we present RapidChain methodology [9]
to analyze security of sharding-based blockchain protocols.
Unlike Ethereum-sharding [19] and OmniLedger [8] that
use binomial distribution to analyze the security of their
sharding-based blockchain protocols, RapidChain method-
ology uses the hypergeometric distribution. Note that using
binomial distribution does not model correctly the sampling
[4]. However, the limitation of RapidChain methodology
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P(Xi <nrXs <nry..., Xy <nr) = i i i (7;;) (ﬂl)(&)/(ﬁ) )

m1=0ms=0

m>\:0

comes from assuming that the failure probability of the
first committee is the same as the other committees; this is
because RapidChain methodology assumes that the failure
probability of one epoch (i.e., one sharding round) is the
failure probability of the first committee times the number
of committees. As reported in Section I, the parametrizations
of the model change after we sample a shard; thus, in practice
each shard has its own failure probability.

The failure probability for a committee with resiliency
r by using the cumulative hypergeometric distribution is
expressed as follows:

n (M\(N-M
H(N,M,n,nr) = Z M

% (17)
k=|nr] n

In RapidChain, they compute the epoch failure probability
by multiplying the failure probability of the first committee
by the number of committees. By ignoring the bootstrap
probability, the epoch failure probability can be expressed as
follows:
n (JV[ ) (N —M )
Pe = AX H(N,M,n,nr) = X x Z % (18)
k=|nr] n

D. COMPUTING CONFIDENCE INTERVALS

In this section, we investigate the reliability of simulations in
estimating the failure probability. For this purpose, we would
like to compute the confidence intervals in order to lower
and upper bound the estimated failure probability. There are
different and several methods to compute confidence inter-
vals including Normal approximation interval, Wilson score
interval [17], [18], Jeffreys interval [17], Clopper—Pearson
interval [17], and Agresti—Coull interval [17]. A commonly
and popular method to compute confidence intervals is Nor-
mal approximation interval. This method is based on the
Central Limit Theorem (CLT); it is inaccurate and unreliable
when the sample size is small or the success probability (the
failure probability in our case) is close to 0 or 1.

In this paper, we choose Wilson score interval since this
method has been shown to be the most accurate and the most
robust [17], [?]. Agresti-Cull method also provides a good
accuracy for larger sample sizes [17].

E. YEARS TO FAIL

To measure the security of a given protocol, we propose to
compute the average number of years to failure. To perform
this computation, we need to determine the failure probability
of epoch per sharding round, which refers to the failure prob-
ability that at least one committee fails. The average number

VOLUME 4, 2016

of years to fail corresponding to the proposed methodology
is given by:

FEs 1
,  where FEy=— (19)
Ny fp

Yy =

The average number of years to fail corresponding to
Hoeffding’s bound as well as RapidChain methodology is
given by:

E 1
. where E;=— (20)
Ny Pe

Yy =
lll. RESULTS AND EVALUATION
In this section, we present a simulation-based evaluation of
our methodology and we compare it with existing contribu-
tions including Hoeffding’s bound [3], [4], and RapidChain
methodology [9].

A. SIMULATION SETUP

To estimate the probability proposed by our methodology
(i.e., the probability in (12)), we use NumPy Python library,
which offers mathematical functions, random number gener-
ators, etc. In particular, we use numpy.array() to set up an
array of M malicious nodes and N — M honest nodes. We
also use numpy.random.choice() to distribute randomly and
without replacement these nodes across shards. Whenever,
we distribute nodes without replacement across shards; we
know the number of malicious nodes in each shard. If only
one shard exceeds the limit (committee resiliency), we save
1 (i.e., failure), otherwise we save 0. Once this procedure is
complete, we have one trial/simulation. To consider all the
possibilities (i.e., the possible number of malicious nodes in
each shard), we need to repeat this trial a large number of
times. After repeating this procedure, we sum the numbers
that we save (i.e., 1 or 0) and we divide by the number of trials
to get the estimated failure probability. For example, let us
assume we executed /N; = 10000 trials and we encountered
at least one shard failure in each of 500 trials; in this case, the
estimated failure probability is:

. 500
Io = 10000 0-05

The relation between the exact failure probability (f,) and
the estimated failure probability ( fp) can be expressed as
follows: R

| fo— Fp 1250 @)

Table 2 shows the values of the parameters used in the
simulations. In Table 2, we assume that the number of
malicious nodes in the network is the maximum number of
malicious that the network can support (for Elastico and Om-
niLedger [7], [8], this maximum number should not exceed

5
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25% of the entire network); this means that M assumes 25%
(M = R x N) of the entire network. Note that we can assume
values smaller than 25% of the entire network. For the values
of N, we assume different values of the network size for the
purpose of analyzing how the size of the network impacts its
security.

TABLE 2. Parameter Settings

Parameter Value
N 1000, 2000, 3500, 4000, and 5000
r 0.333
R 0.250

B. RESULTS AND ANALYSIS

Table 3 shows the estimated failure probability of the pro-
posed methodology when varying the size of the committees
(125, 200, 250) as well as the number of trials (10, 10°, 10).
Table 3 illustrates the Wilson score confidence interval for
the purpose of computing bounds (i.e., computing lower and
upper bounds) to better bound and estimate the failure proba-
bility. In addition, Wilson score confidence interval allows us
to bound the failure probability with a high confidence rate
of 95% and with a low error rate of 5%; this is means that,
we are confident 95% that the estimated failure probability is
between lower and upper bounds of Wilson score CI.

In particular, Table 3 shows that when the size of the com-
mittee increases the failure probability decreases. In addition,
Table 3 shows that as the number of trials increases the width
of Wilson score interval gets smaller; this means that, as the
number of trials increases, we better bound (lower and upper
bound) the failure probability.

It is worth noting that we could not run a very large
number of trials due to the limited performance of our per-
sonal computer. A fundamental question we need to answer
is “How does the number of trials influence the estimated
failure probability?”. To answer this question, we make use
of confidence intervals. Table 3 shows a lower bound and
an upper bound of the estimated failure probability using
Wilson score confidence interval. For 1000000 number of
trials computed by a regular computer (i7-2677M CPU 1.80
GHz and 6GB RAM), the execution time (running time) is
249.84 seconds, which is about 4.16 minutes. Table 3 shows
that the "width" of Wilson score interval gets smaller as the
number of trials gets larger. This means that, as the number
of trials gets larger we better bound the estimated failure
probability. However, when the number of trials gets larger,
we need a supercomputer to calculate/estimate the failure
probability in a reasonable time. It turns out that we have
to make a trade-off between accuracy and computational
overhead.

Figure 2 compares the estimated failure probability com-
puted by using our methodology and that of Hoeffding’s
bound and RapidChain when varying the size of the commit-
tee (100-250) in a network of 1000 nodes. We observe (as ex-

6

pected) that the failure probability decreases as the size of the
committee increases. As mentioned in section I, Hoeffding’s
bound and RapidChain methodology allow us to compute
“false'' failure probabilities since they estimate/compute the
failure of the first shard and multiply it by the number of
shards to get the epoch failure probability. Let us consider an
example to show that existing approaches [3], [4], [9] pro-
duce inaccurate results. Let assume a network that contains
N = 1000 nodes and each shard contains n = 25 nodes.
The failure probability (by using RapidChain’s methodol-
ogy) for one epoch (one sharding round) is 1.569, which is
bigger than 1. This means that RapidChain’s methodology
computes "false" probabilities. The failure probability (by
using Hoeffding’s bound) for one epoch is 9.118, which is
bigger than 1. However, the proposed methodology computes
(by considering N; = 100000) 0.99987, which is smaller
than 1 and it will not assume values greater than 1 because
it is a proper probability distribution (see Lemma 1). Table

—8— New Methodology
—&— Hoeffding's Bound
—&— RapidChain's Methodology

1754
1.50 4
1.25 4
1.00 4
0.75 A
0.50

27 \.—‘

0.00 + Ld & —8

Estimated Failure Probabhility of one Sharding Round

T T T T T T T
100 120 140 160 180 200 220 240
Size of the Committee

FIGURE 2. Estimated failure probability of one sharding round versus the size
of the committee.

4 shows the failure probabilities, computed by the three
methods, and the corresponding years to fail. It is worth
noting that we did consider a small committee size (i.e.,
n=25) to show that existing approaches compute probabilities
that are bigger than 1 (which is not correct); indeed, the
smaller committee size, the bigger the failure probability. In
this example, RapidChain (resp. the approaches in [3], [4])
computes a failure probability that is equal to 1.569 (resp.
9.118). The smaller the size of the committee the bigger
the failure probability; thus, by decreasing the size, we can
show that the failure probabilities computed by the existing
approaches [3], [4], [9] exceed 1. Finally, it worth noting
that as the number of years to fail decreases; this means that
computing "false" probabilities impacts the number of years
to fail, which impacts the security of the network. Figure
3 compares the estimated years to fail using our methodol-
ogy with that of Hoeffding’s bound and RapidChain’s when
varying the size of the committee (100-250) in a network
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TABLE 3. Estimated failure probability of one sharding round vs. committee size and number of trials.

Number of Trials (N¢) Committee Size (n) Failure Probability Wilson Score Interval
(Estimated) Lower Upper Width
125 0.1063 0.1004 0.1124 0.0060
10 000 200 0.0095 7.77E-03 1.15 E-02 1.91 E-03
250 0.0017 1.06E-03 2.72E-03 8.29 E-04
125 0.10319 1.01E-01 1.05E-01 1.88 E-03
100 000 200 0.00808 7.54E-03 8.65E-03 5.57E-04
250 0.001 8.16E-04 1.22E-03 2.02E-04
125 0.105443 1.04E-01 1.06E-01 5.97E-04
1 000 000 200 0.00785 7.69E-03 8.00E-03 1.57E-04
250 0.001004 - — -
TABLE 4. Comparison (in terms of failure probability and years to fail)
between the proposed methodology and the existing approaches.
— 0.006 1 —e— N =1000, n = 200
Methods fp? Yy —— N=1000,n =125
The proposed methodology 0.99987 2.74 E-03 0.005 4
RapidChain methodology [9] | 1.56929 1.74E-03
Hoeffding’s bound [3], [4] 9.11876 3.00E-04 O 0.004
2: As reported above, these probabilities are computed by con- 2
sidering a network of N = 1000 nodes and a committee size ?5 0.003 4
of n = 25. For the probability computed by the proposed s
methodology, we executed 100000. 2
= 0.0021
of 1000 nodes. More specifically, Figure 3 illustrates that 00017
as the size of the committee increases the number of years ° 3
. .. . . 0.000 4
to fail increases; this is expected since when the size of the 7 00000 #00000 600000 800000 1000000

committee increases, the failure probability decreases (Figure
2) leading to increasing the number of years to fail.

—— New Methodology
5.5 | —#— Hoeffding's Bound
—8— RapidChain's Methodology

2.0

154

1.0+

Number of Years to Fail

0.5 4

—n

-

0.0 1 ¥ L

T T T T T T T T
100 120 140 160 180 200 220 240
Size of the Committee

FIGURE 3. Years to fail versus the size of the committee.

Figure 4 shows the number of trials (varying from 10000-
1000000) versus the width of Wilson score confidence in-
terval. We observe that as the number of trials increases the
width of Wilson score interval gets smaller; we conclude
that as the number of trials gets larger we better bound the
estimated failure probability (as expected).

Figure 5 illustrates the number of trials (varying from
10000-1000000) versus the running time in seconds in a

VOLUME 4, 2016

Number of Trials

FIGURE 4. Number of trials versus the width of Wilson score confidence
interval.

network of N = 1000 nodes. We observe that as the number
of trials increases the running time “sharply” increases due
to the limited performance of our machine. From Figures 4

250
—+— N =1000, n = 200
—&— N =1000,n=125

200+

,,_.

w

o
L

Running Time (in Second)
=
o
S
!

50 4

T T T T
400000 600000 800000 1000000

Number of Trials

T
0 200000

FIGURE 5. Number of trials versus the running time (in second).

and 5, we conclude that as the number of trials increases we
better estimate the failure probability but the running time

7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2020.3027952, IEEE Access

Author et al.: A Novel Methodology-Based Joint Hypergeometric Distribution to Analyze the Security of Sharded Blockchains

sharply increases. It turns out that we have to make a trade-
off between accuracy and computational overhead.

Figure 6 shows the number of years to fail for different
numbers of sharding rounds per year (Ng, = 180, N,, =
360, and N, = 730) when varying the size of the committee
(100-250) in a network of N = 1000 nodes. We observe
that as the number of sharding rounds per year decreases
the number of years to fail increases; this means that, as the
number of sharding rounds per year decreases the security of
the network increases. We conclude that the number of shard-
ing rounds impacts the security of sharding-based blockchain
protocols.

== = N_sy =180 7
5 N_sy = 365 Vi
== N_sy= 730 /
/
=4 /
i /
/
© 3
g /
s /
g /
22
E /
z /
/
14 —/
——‘———
-
0 ==

100 120 140 160 180 200 220 240
Size of the Committee

FIGURE 6. Number of years to fail for different numbers versus the size of the
committee for the different number of sharding rounds per year (N,).

Figure 7 shows the failure probability of one sharding
round for different network’s sizes (N = 1000, N = 2000,
N = 4000) when varying the committee’s size (100-250).
Specifically, this failure probability is calculated by using
the proposed methodology for N, = 1000000 trials. We
observe that as the network’s size increases the estimated
failure probability increases; this means that the size of the
network affects its security.

e
N

== = N = 1000
N = 2000
== N = 4000

o o o o o
N w » w o

°
e

Estimated Failure Probability of one Sharding Round

-
-~
=
ad
-~
-~
-~ -

4
o

100 120 140 160 180 200 220 240
Size of the Committee

FIGURE 7. Failure probability of one sharding round versus the size of the
committee (n) for the different network’s sizes (N).

8

Finally, we identify numerous factors that impact the se-
curity of the network, which are the size of the committee,
the number of years to fail, and the size of the network. Now,
let us determine the best combination of the values of these
factors to achieve the best security. In practice, the network
size is given (i.e., an average) since it is public blockchain
(i.e., users can leave/join at any time). However, we can
increase/decrease the size of the committee and the number
of sharding rounds per year in order to determine a predefined
level of security (i.e., a predefined number of years to fail).

Let us consider some 3D graphs to show the best combina-
tion that gives us the best security (the bigger number years
to fail). Figure 8 shows the number of years to fail versus
the size of the committee (n varying from 10 to 200) and
the number of sharding rounds per year (N, varying from
45 to 730) by considering N; = 100000 in a network of
N = 1000 nodes. We observe that for n = 192.421 and
Ngy = 22.589 we have the best combination that achieves
the biggest number of years to fail, which is about 2.58026
years. Figure 9 shows the years to fail for different network’s

Years to Fail

75
Cor> 100
OMMittee 51;: 150 155 100 g

FIGURE 8. Years to fail versus the size of the committee and the number of
sharding rounds per year.

sizes (N = 2000, N = 3500 and N = 5000) versus the
size of the committee (n varying from 10 to 200) and the
number of sharding rounds per year (V,, varying from 45 to
730) by considering N; = 10000. We observe three surfaces;
the higher one corresponds to N = 5000 nodes, followed by
the surface that corresponds to N = 3500 nodes, and the last
one corresponds to N = 2000 nodes. We conclude that as the
network’s size increases the number of years to fail increases,
which shows again that the size of the network impacts its
security.

IV. CONCLUSION

In summary, the paper proposes a novel methodology
to analyze and investigate the security of sharding-based
blockchain protocols. This methodology corrects the existing
approaches [3], [4], [9]. In particular, we estimate the failure
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Years to Fail

FIGURE 9. Years to fail versus the size of the committee and the number of
sharding round per year for different network’s sizes.

probability of the entire network in one sharding round taking
into account the failure probability of each committee/shard.

To

validate and confirm that our methodology gives better

estimation, we compute confidence intervals using Wilson
score method since it is the most accurate and robust. After
estimating the failure probability, we can measure the secu-
rity of the network by estimating the number of years to fail.
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A. PROOF OF THEOREM 1
First we prove the equality for A = 2.
For A = 2, we have M = my + mo and N = 2n.
Let Ay = P(X; = my, Xo = my) We need to prove that:

) ()

Ay = (22)
(3)
We have:
1 J
A2 = H h(N — jn, M — Zmi,n, mj+1)
j=0 i=0
) Goa) | O™
() ("2
OO )
(%) ()
() o)
= ———1 Xay
)
M! (N—M)!
mq!(M—mq)! (n—m1)!(n—my)!
= x 1
B MI(N — M)! nln!
— my!ma!(n —my)!(n — my)! ‘NI
_ n! n! y MY (N — M)!

mil(n —mi)l "~ mol(n —my)! N!

) )

W

Now, let us prove the equality for A = 3.
For A = 3, we have M = mq + mo +ms and N = 3n.
And

2 J
Az = H h(N — jn, M — Zmian,mj+l)
3=0 =0
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We need to prove that:

(23)
(+r)
Let mg assumes 0,
2 J
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j=0 i=0
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By simplifying the previous expression, we get:

n! n!
As = m!(n —my)! % ma!(n —ms)!
n! MI(N — M)!
. ms!(n —mg)! . Ny
)
(3)

Finally, we get:
o ) )

(+r)

Now, let us prove the equality for A. Let m( assumes 0.
For \, we have M = Y"»_, m; and N = An.
And
Ax =TI MN = jn, M = 21 mi,nmypa).
We need to prove that:
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By substituting each Binomial coefficient by its

algebraic expression, we get:
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By simplifying the previous expression, we get:
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We need to prove that the sum over this probability equals to
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This means that P is a proper probability distribution func-
tion.
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